
Abstract- It has been proposed that the segmental spinal
nervous system may organize movement using a collection
of force-field primitives. The temporal organization of
primitives has not been examined in detail. Recent data
examining muscle activity underlying corrections of
motor patterns suggested that primitives might be
recruited into motor programs as waveforms with a
constant duration. Here we test the idea that each
primitive or premotor drive comprising part of the motor
patterns might be expressed as the combination of a small
number of time-frequency atoms from some orthonormal
basis.  We analyze the temporal organization of pre-motor
drives extracted from the motor pattern by the Bell-
Sejnowski algorithm for independent component analysis.
We then use matching pursuit cosine packet analysis to
examine the time series of the activation waveforms of
each of the independent components. The analysis
confirms that the motor pattern can be described as a
combination of a small number of time-frequency atoms.
These atoms combine to generate the temporal structure
and activation of the individual components or premotor
drives that generate individual muscle activity.
Keywords -  Primitives, electromyograms, force-fields,
independent component analysis, time frequency atoms.

I. INTRODUCTION

*The discovery of the (potentially low dimensional)
structure underlying complex motor acts organized by
animals and man is an issue of central importance to
neuroscience. The organization of action impacts on sensory
processing for action, learning, and development, and is
significant for understanding of injury, disease, rehabilitation
and biomimetic neurotechnologies or robotics. Motor acts
organized by the spinal cord of lower vertebrates show
complex adapted goal directed properties reminiscent of
voluntary movement [1,2].  For example, after surgical
preparation of a spinal frog by destroying the connection of
medulla and rostral brain structures with the spinal cord,
complex goal directed movement can be evoked from the
spinal cord. The trajectories organized by the spinal frog to
remove irritants from the skin share many properties with
human voluntary movement [1] and exhibit rapid on-line
corrections [2]. In the context of these on-line corrections, we
observed that the activation of muscles for corrections and
during other phases of the motor pattern exhibited a similar
duration, regardless of context [2]. We also observed in a
                                                          
* Supported by NIH NS34640 and NS40412.

different paradigm that isometric forces could be decomposed
into fixed duration waveforms that were conserved across
frogs [3]. These data relate generally to the idea of force-field
primitives as a spinal basis for movement[2,3,4,5].

A. The hypothesis to be examined

Our data led us to speculate that the frog spinal cord
constructs movement by a mechanism of combination of
primitives, each primitive being of the following form:

                                     (1)
A is a scaling factor, t is time and r a coordinate vector
describing the limb configuration. We speculate that a(t) is
similar in all primitives, resembling a fixed half cycle
oscillation, or a fixed impulse response. If correct, this
constrains the method of construction of a time varying force-
field F(r,r,t) for generation of a behavior to the selection of
the scalings Ai and the phasings τι of the component
primitives in equation 2 below.

In this formulation the motion control field F is thus
constructed  as:

                                     (2)
    To test these ideas here we used analyses of
electromyogram patterns in various behaviors. Our focus here
will be on testing the conservation of timing properties (the
function a(t)) across primitives.

II. METHODOLOGY

A. Electromyogram based analysis of primitives

    In the earlier experiments referenced in [1,2,3] we
examined waveforms by the methods historically used in
Electroencephalography (EEG). We time aligned and
amplitude normalized peaks of waveforms and examined
deviations away from peak. Electromyograms (EMG) have
the advantage over force records that they can be obtained
during movement and that they more properly reflect the
neural output of the central nervous system (CNS) than
isometric forces, which depend on a combination of limb
state and EMG.  In our early examination of EMG we
detected underlying groups of muscles and phases of activity
by inspection and subtraction procedures [1,2,3]. Here, we
sought a method to examine drives and temporal patterns in
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an hypothesis free manner, insofar as feasible. We sought to
achieve two goals: (1) decompose the electromyograms into a
set of premotor drives, (2) to examine the temporal behavior
of these drives.

B. Extraction of premotor drives

    To extract premotor drives representing primitives we used
the Bell-Sejnowski algorithm for independent component
analysis (See Figure 1). This infomax neural network
algorithm has been applied extensively to EEG and maps
naturally onto the problem of detection of primitives or drives
in EMG patterns. Each EMG channel from a muscle can be
considered a "microphone" listening to one or more premotor
drives, in the manner of a person listening to multiple
speakers conversing. Neurophysiological data provides
support for the motor unit acting as an element which linearly
sums premotor drives under most circumstances. Premotor
drives and primitives are considered to be independently
controllable contributors to movement. Extraction of
premotor drives  from EMG is thus likely to be a problem
well suited to the Bell-Sejnowski Algorithm [6,7]. We first
extracted the weight matrices for independent components
and their associated activation waveforms through time using
this algorithm in the MATLAB implementation of Scott
Makeig1 and then examined the time series behavior of these
waveforms.

C. Examination of time series behavior of premotor drives

     We tested two methods for decomposing the time series of
independent component activation into a  small number of
wavepackets or elements. Both are well established and
available in the Wavelab MATLAB extension. Both are
means of selecting a small orthornormal basis from an
overcomplete set of bases or wavepacket dictionaries of size
2^N, where N is the time series length. The best basis
algorithm of Wickerhauser and Coifman performs a globally
optimal decomposition into a basis than minimizes entropy.
The matching pursuit algorithm of Mallat and Zhang [8] uses
a greedy algorithm to locate a small number of locally
optimized time-frequency 'atoms' (ibid.) from the wavepacket

dictionary. In this paper we will focus on the use of the
matching pursuit algorithm2. We chose the subset of atoms
from the wavepacket dictionary built by the matching pursuit
algorithm that gave reconstruction of 95% of the signal
variance of the activation time series.  We then examined the
time-frequency atoms in this subset in more detail.

III. RESULTS

A. Similarly shaped time-frequency atoms dominate the
significant independent components in a frog

    We present data for matching pursuit analyses from 2
frogs, showing analyses of 3 components in one frog and a
similar example of a component in a second frog for
comparison.

In figure 2 we summarize part of the analysis of a typical
set of components from such a data set. Time frequency
atoms were classified in the time domain into groups and the
groups ranked in terms of frequency of occurrence in the
decomposition. In the top row (figure 2A) we show the
number of occurrences of specific impulse shapes for the
three components accounting for the highest fractions of
EMG variance in frog 1. The corresponding tapered cosine
shapes were normalized to a peak amplitude of 1. In the
figure in row 2B the normalized waveforms are displayed
over the 100 point (400ms) intervals examined in a time
domain  classification of the atoms. The same two waveforms
(the first two in each row) were most frequent in all 3
components. In 2C we show the mean amplitude of each of
these waveform classes in the reconstruction. To generate the
graphical display of the data shown in 2C the wave in 2B was
amplitude modulated according to its mean peak amplitude in
the reconstruction. In general the first waveform was the
highest mean amplitude. The exception was in component 2
in which the 9th was.  However, this waveform was only used
once in the reconstruction (presumably) for some unusual
                                                          

1 see http://www.cnl.salk.edu/~scott/
2 see http://www-stat.stanford.edu/~wavelab
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Figure 1: Processing stream and data
analysis. Raw EMG was rectified and
filtered and used as input to the Bell-
Sejnowski ICA algorithm. This generated
an ICA weight matrix describing EMG
contributions of each component or
drive, and activation time series for each
component. The activation time series
were subject to Mallat and Zhang
Matching pursuit cosine packet analysis
and those time-frequency atoms required
to achieve 95% signal reconstruction
examined. See Figures 2-4
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wave structure. In figure 2D we use a similar graphical
device to show the summed amplitude of each wave type
used in the to show the summed amplitude of each wave type
used in the 95% reconstruction and the contribution of the
first type of atom can be seen to dominate. The normalized
waves in figure 2B were amplitude modulated according to
their total summed amplitude in the reconstruction to
generate this graphical display. It can be seen that in every
instance power was concentrated in the first and most
frequent wave shape. Taken together these analyses indicate
that in this frog a single wave shape and similar frequency
cosine packet accounted for most of the signal power of each
independent component, drive or primitive extracted by ICA.
This observation was in keeping with a fixed duration of
activity for each type of primitive, as hypothesized above.

Figure 2: Matching Pursuit Analysis of three ICA components in a single frog. A: numbers of uses of a time frequency
atom of the type shown in B. B: normalized time-frequency atom types shown over 400ms intervals. C: mean amplitude
of each time-frequency atom in the 95% reconstruction. (Waveforms in row B multiplied by mean amplitude of
waveform). D: total amplitude of all time-frequency atoms of each type. (Waveforms in B multiplied by total
amplitude).
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Figure 4 Reconstruction of 85% of the variance of
component 1, frog1. This was achieved  with 4 types of time-
frequency atoms (indicated by asterisks in part A ). A: Mean
amplitude of each time frequency atom (see Figure 1 and text)
and atoms used. B: total amplitude of each atom type. C:
original ICA component activation time series, extracted by
Bell-Sejnowski algorithm. D: 85% reconstruction.

Figure 3 Comparison of matching pursuit analyses among
components in two frogs. Although there are 12 ‘types’ of
waves in Frog 1 and 10 in Frog 2, most power is concentrated
in a similar wave shape and the first three most frequent time-
frequency atoms are similar.
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B. Similarly shaped time-frequency atoms dominate in
significant components among frogs

     In figure 3 we show that signal power was concentrated in
specific and similar time-frequency atoms and wave shapes in
two frogs. We display the summed amplitude measure, which
graphically indicates both wave type and power content for
the time frequency atoms accounted for 95% of signal
variance in the two most important independent component in
two frogs. This figure corresponds to Figure 2 row D. Note
the close similarity of the first three wave types and
especially the first high amplitude component. We found this
similarity of wave shape or impulse in most frogs in which
independent components different from EMG channels were
readily obtained.

C. Selection of a few time frequency atoms reconstructs
85% of signal variance for an independent component.

   We found that selecting a few of the time-frequency atom
types (<4) from the dictionary used in the reconstruction
allowed us to reconstruct ~85% of the independent
component variance and to substantially reconstruct the
original EMG signal. In figure 4 we show the mean (4A) and
summed (4B) amplitudes of atoms. The types of time-
frequency atoms selected are shown in A with asterisks.  In
figure 4C the time series of the independent component
activation directly obtained from the ICA analysis is shown.
In 4D we show the reconstruction using four time-frequency
atom types indicated by asterisks in figure 4A. The
substantial variance captured by this reconstruction is in
keeping with a description of the behavior of individual
independent components as comprised of a series of
amplitude and phase modulated pulses of similar waveform.

IV. DISCUSSION

   The notion of intermittency and time quantized elements in
human and animal movement construction has been
suggested by many sets of experiments e.g. from Ghez, Krebs
and Hogan, Flash, Milner and others. The decomposition of
EMG into principal components, or factors has been used to
examine the dimensionality of drive or control variables
underlying the motor pattern, or kinematic production.
Independent Component Analysis is a superior method for
this decomposition, although not the primary focus of this
presentation. Use of ICA to extract lower dimensional and
significant representations of EEG or other biological signals
has been thoroughly explored. Such components might be
used as a basis for neuroprosthetic control [9]. In this study
the relation of components to the basis of motor action may
be far more direct than in previous studies. However the
drives extracted by ICA need not possess similar timing
structures among themselves, indeed it might be speculated
they would not. The extraction of similar frequency impulse
structures underlying the more significant components is thus
both potentially surprising and important. If components
represent premotor drives or primitives, this analysis implies
these are not passive followers of arbitrary imposed control

signals but possess intrinsic dynamics or filtering properties.
Further, we can speculate that the imposed control signals are
either fairly discrete impulses or else the circuitry of
primitives organizes the incoming control signals into pulsed
actions by their intrinsic dynamics. These data also support a
separation of a rhythm generating or a pulse timing system in
the spinal cord from a set of execution modules or primitives.
This is a departure from the conventional fully integrated
central pattern generator systems suggested by invertebrate
systems like the stomatogastric ganglion but in keeping with
frameworks suggested by ourselves, by Schaal and Sternad,
by Prochazka and some engineering decompositions used in
robotics. In our opinion these data and our other analyses of
reflex trajectories do not support any explicit central
equilibrium path or other trajectory specification, therefore
resembling the descriptions of Todorov [10] at a non-cortical
level. Based on our analyses we believe there is good reason
to suppose the formulation of equation 2 in the introduction
may capture the essence of spinal construction of movement.
Issues then become whether descending controls can modify
the intrinsic dynamics or structure of primitives so as to alter
field structure or time dilate or contract the impulses which
appear to drive movement at the spinal level.
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